Name:		
AP Physics 1		
Table of information and	Equation	Tables

AP Physics 1 Table of information and Equation Tables

ADVANCED PLACEMENT PHYSICS 1 TABLE OF INFORMATION

CONSTANTS AND CONVERSION FACTORS				
Proton mass, $m_p = 1.67 \times 10^{-27} \text{ kg}$	Electron charge magnitude, $e = 1.60 \times 10^{-19} \text{ C}$			
Neutron mass, $m_n = 1.67 \times 10^{-27} \text{ kg}$	Coulomb's law constant, $k = 1/4\pi\epsilon_0 = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$			
Electron mass, $m_e = 9.11 \times 10^{-31} \text{ kg}$	Universal gravitational constant, $G = 6.67 \times 10^{-11} \text{ m}^3/\text{kg} \cdot \text{s}^2$			
Speed of light, $c = 3.00 \times 10^8 \text{ m/s}$	Acceleration due to gravity at Earth's surface, $g = 9.8 \text{ m/s}^2$			

	meter,	m	kelvin,	K	watt,	W	degree Celsius,	°C
UNIT	kilogram,	kg	hertz,	Hz	coulomb,	C		
SYMBOLS	second,	s	newton,	N	volt,	V		
	ampere,	Α	joule,	J	ohm,	Ω		

PREFIXES				
Factor	Prefix	Symbol		
10 ¹²	tera	T		
10 ⁹	giga	G		
10 ⁶	mega	M		
10 ³	kilo	k		
10^-2	centi	с		
10 ⁻³	milli	m		
10 ⁻⁶	micro	μ		
10 ⁻⁹	nano	n		
10^{-12}	pico	p		

VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES							
θ	0°	30°	37°	45°	53°	60°	90°
$\sin \theta$	0	1/2	3/5	$\sqrt{2}/2$	4/5	√3/2	1
$\cos \theta$	1	√3/2	4/5	$\sqrt{2}/2$	3/5	1/2	0
$\tan \theta$	0	√3/3	3/4	1	4/3	√3	∞

The following conventions are used in this exam.

- The frame of reference of any problem is assumed to be inertial unless otherwise stated.
- II. Assume air resistance is negligible unless otherwise stated.
- III. In all situations, positive work is defined as work done on a system.
- The direction of current is conventional current: the direction in which positive charge would drift.
- V. Assume all batteries and meters are ideal unless otherwise stated.

ADVANCED PLACEMENT PHYSICS 1 EQUATIONS

MECHANICS

$v_x = v_{x0} + a_x t$	a =	acceleration
	A =	amplitude
$x = x_0 + v_{x0}t + \frac{1}{2}a_xt^2$	d =	distance
2 4 2	E =	energy
2 2 2 ()	f =	frequency
$v_r^2 = v_{r0}^2 + 2a_r(x - x_0)$	17	£

$$|\vec{F}_f| \le \mu |\vec{F}_n|$$
 $k = \text{spring constant}$ $L = \text{angular momentum}$ $\ell = \text{length}$

$$a_c = \frac{v^2}{r}$$
 $m = \text{mass}$
 $P = \text{power}$
 $p = \text{momentum}$

$$\vec{p} = m\vec{v}$$
 $p = \text{momentum}$
 $r = \text{radius or separation}$

$$\Delta \vec{p} = \vec{F} \, \Delta t$$
 $T = \text{period}$ $t = \text{time}$

$$K = \frac{1}{2}mv^2$$
 $U = \text{potential energy}$ $V = \text{volume}$

$$\Delta E = W = F_{\parallel}d = Fd\cos\theta$$
 $v = \text{speed}$
 $W = \text{work done on a system}$

$$P = \frac{\Delta E}{\Delta t}$$
 $x = position$
 $y = height$

$$\alpha$$
 = angular acceleration

$$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$$
 $\mu = \text{coefficient of friction}$
 $\theta = \text{angle}$

$$\omega = \omega_0 + \alpha t$$
 $\rho = \text{density}$
 $\tau = \text{torque}$

$$x = A\cos(2\pi ft)$$
 $\omega = \text{angular speed}$

$$\vec{\alpha} = \frac{\sum \vec{\tau}}{I} = \frac{\vec{\tau}_{net}}{I} \qquad \Delta U_g = mg \, \Delta y$$

$$\tau = r_{\perp}F = rF\sin\theta$$

$$L = I\omega$$

$$T = \frac{2\pi}{\omega} = \frac{1}{f}$$

$$\Delta L = \tau \Delta t$$
 $T_s = 2\pi \sqrt{\frac{m}{L}}$

$$K = \frac{1}{2}I\omega^2$$

$$T = 2\pi\sqrt{k}$$

$$K = \frac{1}{2}I\omega^{2}$$

$$|\vec{F}_{s}| = k|\vec{x}|$$

$$\begin{aligned} |\vec{F}_s| &= K|x| \\ |\vec{F}_g| &= G \frac{m_1 m_2}{r^2} \\ U_s &= \frac{1}{2} k x^2 \end{aligned}$$

$$\rho = \frac{m}{V}$$

$$\vec{g} = \frac{\vec{F}_g}{m}$$

$$U_G = -\frac{Gm_1m_2}{r}$$

$ \vec{q}_1 = \vec{q}_1 \vec{q}_2 $	A = area
$\left \vec{F}_E \right = k \left \frac{q_1 q_2}{r^2} \right $	F = force
	I = current
$I = \frac{\Delta q}{\Delta t}$	$\ell = length$
Δt	P = power
$\rho = \rho \ell$	q = charge

$$R = \frac{P^c}{A}$$
 $R = resistance$
 $I = \frac{\Delta V}{R}$ $t = time$

$$I = \frac{\Delta V}{R}$$
 $t = \text{time}$
 $V = \text{electric potential}$
 $V = \text{electric potential}$
 $V = \text{electric potential}$
 $V = \text{electric potential}$
 $V = \text{electric potential}$

ELECTRICITY

$$\frac{1}{R_p} = \sum_i \frac{1}{R_i}$$

WAVES

$$\lambda = \frac{v}{f}$$
 $f = \text{frequency}$
 $v = \text{speed}$
 $\lambda = \text{wavelength}$

GEOMETRY AND TRIGONOMETRY

Rectangle	A = area
A = bh	C = circumference
	V = volume
Triangle	S = surface area
$A = \frac{1}{2}bh$	b = base
2	h — baiaht

$$A = \frac{1}{2}bh$$
 $b = \text{base}$
 $h = \text{height}$
 $\ell = \text{length}$
 $\ell = \text{length}$
 $\ell = \text{weidth}$
 $\ell = \text{radius}$

$$C = 2\pi r$$

Rectangular solid Right triangle $V = \ell wh$

$$V = \ell wh$$
 $c^2 = a^2 + b^2$
Cylinder $\sin \theta = \frac{a}{c}$
 $V = \pi r^2 \ell$ $\cos \theta = \frac{b}{c}$

$$V = \pi r^{2} \ell$$

$$S = 2\pi r \ell + 2\pi r^{2}$$

$$\cos \theta = \frac{b}{c}$$
Sphere
$$\tan \theta = \frac{a}{b}$$

phere
$$V = \frac{4}{3}\pi r^{3}$$

$$S = 4\pi r^{2}$$

$$D = \frac{4}{3}\pi r^{3}$$