Physics Formula Sheet

Force and Motion $V_{avg} = \frac{\Delta d}{\Delta t}$ Average velocity = $\frac{\text{displacement}}{\text{change in time}}$ $Acceleration = \frac{\text{final velocity} - \text{initial velocity}}{\text{change in time}}$ $a = \frac{v_f - v_i}{\Lambda t}$ $a = \frac{v_f^2 - v_i^2}{2\Delta d}$ Acceleration = $\frac{(\text{final velocity})^2 - (\text{initial velocity})^2}{2 \text{ (displacement)}}$ $\Delta d = v_i \,\Delta t + \frac{1}{2} \,a \,\Delta t^2$ Displacement = (initial velocity)(change in time) + $\frac{1}{2}$ (acceleration)(change in time)² $a_c = \frac{v_t^2}{r}$ Centripetal acceleration = $\frac{(\text{tangential velocity})^2}{\text{radius}}$ $F_{net} = m a$ Net force = (mass)(acceleration)W = F dWork = (force)(distance) $\tau = Fr$ Torque = (force)(lever arm) $P = \frac{W}{t}$ Power = $\frac{\text{work}}{\text{time}}$ $a^2 + b^2 = c^2$ Pythagorean theorem

Gravitational, Electrical, and Magnetic Forces

$F_g = G\left(\frac{m_1 m_2}{d^2}\right)$	$ \begin{pmatrix} Force of gravitational \\ attraction between \\ 2 objects \end{pmatrix} = \begin{pmatrix} Universal \\ gravitational constant \end{pmatrix} \begin{pmatrix} (mass of 1st object)(mass of 2nd object) \\ \hline (distance between center of objects)^2 \end{pmatrix} $
$F_{electric} = k_c \left(\frac{q_1 q_2}{d^2}\right)$	$ \begin{pmatrix} Force between \\ 2 charged \\ particles \end{pmatrix} = \begin{pmatrix} Coulomb's \\ constant \end{pmatrix} \left(\frac{(charge of 1st particle)(charge of 2nd particle)}{(distance between particles)^2} \right) $
P = VI	Electrical power = (voltage)(current)
$I = \frac{V}{R}$	$Current = \frac{voltage}{resistance}$
$R=R_1+R_2+R_3+\dots$	Equivalent resistance for resistors in series
$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$	Equivalent resistance for resistors in parallel

Energy and Momentum		Constants and Conversions
$KE = \frac{1}{2}mv^2$	Kinetic energy = $\frac{1}{2}$ (mass)(velocity) ²	$c = (\text{speed of light}) = 3.00 \ge 10^8 \frac{\text{m}}{\text{s}}$
$PE_g = mgh$	Gravitational potential energy = $(mass) \begin{pmatrix} acceleration due \\ to gravity \end{pmatrix}$ (height)	$g = (acceleration due to gravity) = 9.8 \frac{m}{s^2}$
$PE_{elastic} = \frac{1}{2}kx^2$ $E = Pt$	Elastic potential energy = $\frac{1}{2} { (spring constant) (distance stretched or compressed)^2 }$ Energy = (power)(time)	$G = \begin{pmatrix} \text{universal} \\ \text{gravitation} \\ \text{constant} \end{pmatrix} = 6.67 \ge 10^{-11} \frac{\text{N m}^2}{\text{kg}^2}$
$W = \Delta K E$	Work = change in kinetic energy	$k_c = \begin{pmatrix} \text{Coulomb's} \\ \text{constant} \end{pmatrix} = 8.99 \text{ x } 10^9 \frac{\text{N m}^2}{\text{C}^2}$
ME = KE + PE	Mechanical energy = kinetic energy + potential energy	$m_E = (mass of Earth) = 5.97 \ge 10^{24} \text{ kg}$
$KE_i + PE_i = KE_f + PE_f$	Law of Conservation of Energy	$r_E =$ (radius of Earth) = 6.37 x 10 ⁶ m
p = mv	Momentum = (mass)(velocity)	Newton (N) = $\frac{\text{kg m}}{s^2}$
$J = F \Delta t = m \Delta v$	Impulse = (force)(change in time) = (mass)(change in velocity)	$I_{\text{oule}}(I) = N m$
$m_1 v_{1i} + m_2 v_{2i} = m_1 v_{1f} +$	Law of Conservation of Momentum	
$m_2 V_{2f}$ $Q = m c_p \Delta T$	Heat gained or lost = (mass)(specific heat)(change in temperature)	Watt (W) = $\frac{1}{s} = \frac{1}{s}$
Wayes and Light		Hertz (Hz) = $\frac{-s}{s}$
$v = t\lambda$	velocity = (frequency)(wavelength)	
$\frac{1}{f} = \frac{1}{d_i} \neq \frac{1}{d_o}$	$\frac{1}{Focal length} = \frac{1}{distance to image} + \frac{1}{distance to object}$	
$E = mc^2$	Energy = (mass)(speed of light) ²	